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Abstract. Despite the progress made in AI, especially in the successful deploy-

ment of deep learning for many useful tasks, these systems typically require a 

huge number of training instances, and hence a long time for training. As a result, 

these system are are not able to rapidly adapt to changing rules and constraints in 

the environment. This is unlike humans, who are usually able to learn with only 

a handful of experiences. This hampers the deployment of, say, an adaptive robot 

that can learn and act rapidly in the ever-changing environment of a home, office, 

factory, or disaster area. Thus, it is necessary for an AI or robotic system to 

achieve human performance not only in terms of the “level” or “score” (e.g., suc-

cess rate in classification, score in Atari game playing, etc.) but also in terms of 

the speed with which the level or score can be achieved. In contrast with earlier 

DeepMind’s effort on Atari games, in which they demonstrated the ability of a 

deep reinforcement learning system to learn and play the games at human level 

in terms of score, we describe a system that is able to learn causal rules rapidly 

in an Atari game environment and achieve human-like performance in terms of 

both score and time. 

Keywords: Causal Learning, Human-like Performance, Atari Game Playing, 

Space Invaders Game Playing, Problem Solving. 

1 Introduction 

Artificial intelligence (AI) has taken great strides in many domains of applications, but 

there has been realization that even though many AI systems can perform certain tasks 

very well that normally require human intelligence, and sometimes even superseding 

human abilities in those tasks, their performance is not “human-like” in some aspects. 

For example, when deep learning is applied to pattern classification and recognition, 

the accuracy is very high and sometimes outstrips human performance, but humans 

usually require only a few instances of training examples to learn to classify and rec-

ognize the objects involved with high accuracy, whereas deep learning systems 
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typically require many orders of magnitude of the number of training examples needed 

by humans. Thus, we can distinguish two aspects of judging the capability of an intel-

ligent system, human or artificial. There is the level of performance, which is often a 

percentage score on the success on some tasks, such as classification, and the other is 

the time taken to learn. Human-like performance means the system must perform well 

on both measures. Currently AI systems largely satisfy only the “level” aspect. 

One notable example recently is the DeepMind’s seemingly successful attempt in 

using deep reinforcement learning to play Atari games, in which it was purported that 

the system is a general learning system that is applicable to a wide domain of applica-

tions [10]. The claim of generality stems from the fact that the one same algorithm, 

namely the deep reinforcement learning algorithm, was used quite successfully (in 

some cases more successfully than others) to play a slew of more than 50 Atari games 

with a large variety of game scenarios. Their measure of success in playing these games 

focuses on the “score” measure – i.e., is the system able to score well, at human (novice 

or expert) level? By that measure of score, they succeeded reasonably well (in more 

than 50% of the games involved, the system was able to score higher than that of hu-

mans), but by the measure of time, DeepMind’s system plays at a speed many orders of 

magnitudes slower than that of human players. Tsividis also pointed out this large dis-

crepancy between the time performance of DeepMind’s system and that of human play-

ers [16]. 

As for DeepMind’s approach and achievement vis-à-vis AlphaGO [15], we observe 

that a human Go (or for that matter chess) player only has the ability to search a vastly 

smaller state space compared to that searched by AlphaGo when playing the game, and 

yet is still able to perform at Grand Master level, despite the recent losses to AlphaGo. 

Relatively speaking, despite the fact that mechanisms are in place to reduce the search 

space (e.g., Monte Carlo search mechanisms), AlphaGo still employs basically rela-

tively brute-force search with the aid of super powerful computers. Obviously, the men-

tal processing mechanisms employed by human players on the one hand and AlphaGo 

on the other are vastly different. 

As Go and chess are relatively complicated in terms of the mental processing mech-

anisms in the human player’s mind, which are not fully understood, we believe human 

players use the learning and understanding of causality to learn how to play Atari 

games. Ho and Zhu’s groups have developed a framework and method to learn causality 

from visual input [1-8]. We have applied the method to the Atari game, Space Invaders, 

and have been able to demonstrate that a framework based on learning of causal rules 

from the visual environment together with an AI problem solving framework can pro-

duce a system that achieves human-like performance both in terms of level (score) and 

time taken. Below we first describe the basic principles behind the causal learning and 

problem solving framework and then describe the application to Space Invaders.  

To understand why this is important for AI and robotics, imagine the situations typ-

ically faced by a robot if it is to learn and perform tasks on a day to day basis such as 

operating a toaster or a washing machine. To operate a toaster, a robot is expected to 

learn that there is a causal connection between the pressing down of the lever on the 

toaster and the heating up of the toaster, hence the toasting of the bread. If a robot is to 

function satisfactorily as a house-help, it has to learn this at most within a small handful 
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of demonstrations. Similarly, for a washing machine, a robot is expected to observe the 

process of loading clothes into a washing machine and then turning it on to wash the 

clothes, and learning this process perhaps within one or two demonstrations. Similarly, 

there are many rapid learning scenarios such as these with the various machines present 

in the offices, factories, disaster areas, and many other places in which a generally adap-

tive robot is expected to rapidly learn the causalities between actions and effects to be 

able to function effectively. Thus, human-like performance is indispensible. Deep rein-

forcement learning is not able to handle this kind of demands. 

This paper attempts to use the example of the Atari game, Space Invaders, to firstly 

illustrate and define what it really means to achieve human-like performance for AI, 

and secondly demonstrate the mechanisms that enable human-like performance for an 

AI system. 

2 A  Causal Learning and Problem Solving Framework 

2.1 Basic Idea behind Causal/Temporal Learning 

Judea Pearl has recently announced in his book that causality is now a legitimate do-

main of study [14]. The reason why the study of causality and hence causal learning 

has been hampered in the past was that there has been an often chanted “mantra” that 

“correlation is not causality.” However, in the domain of statistics, a method for scien-

tific cause-effect discovery has long been established, and it is basically to uncover the 

correlation between an intervention (such as the administering of a drug) and an effect 

(such as the curing of a disease) observed later, with other variables randomized (e.g., 

age, gender, nationality of the patients involved, etc.) [9, 13, 15]. Statistics takes a con-

servative stance with regards to correlations without intervention. E.g., if there is cor-

relation in the data that smoking and lung cancer are related, it is not always possible 

to conclude that smoking causes lung cancer because there could be a gene that predis-

poses people to smoke and at the same time it predisposes people to develop lung cancer 

later in life (some tobacco companies have used that to their defense when facing law-

suits). This is the source of the mantra “correlation is not causality.” 

Yang and Ho [17] take the stance that both causality and temporal correlations are 

important for AI’s purposes. If one can establish the correlation between an interven-

tion/action and a subsequent effect, thus establishing the causality between the action 

and effect, one can use it for (i) prediction – if the action is taken, the effect is expected; 

and (ii) problem solving – to achieve the effect, one can take the action. On the other 

hand, if a temporal correlation is observed between two events, none of which is an 

intervention/action taken by the system/human, then the temporal correlation is useful 

only for prediction – if the first event is observed, the second event is likely to follow. 

Thus, whether there is a gene that causes both smoking and the subsequent lung cancer 

is not important for prediction – if there is indeed a correlation between the two events, 

then observing someone smoking is sufficient to conclude that lung cancer may follow, 

notwithstanding whether there is an underlying gene that is ultimately causally respon-

sible for both. 
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In the following discussion, most of the concepts and constructs are applicable to 

both causality and temporal correlation as defined above. In some cases where they 

differ, we will highlight it explicitly, otherwise it can be assumed that the mechanisms 

work for both situations. 

 

2.2 Diachronic vs Synchronic Causal Condition for Causal/Temporal Rule 

Learning 

In the framework of causal/temporal learning set up by Ho’s group [3, 4, 17], a distinc-

tion is made between diachronic vs synchronic causal/temporal conditions. (As men-

tioned above, as the following discussion is applicable to both causality and temporal 

correlation, we will omit the “temporal” portion sometimes henceforth.) Fig. 1 illus-

trates the distinction with an example. 

 

 
Fig. 1. (a) An Agent wanders around in the environment and Touches a piece of Food and expe-

riences Energy_Increase. (b) The Agent encounters another experience of Energy_Increase. 

 

In Fig. 1(a) it is shown that an Agent explores around in an environment and acci-

dentally Touches a piece of Food at time T1 and at location L1 and it finds itself expe-

riencing an increase in energy. A causal rule can be learned as such: At(Agent, L1, T1) 

& Touch(Agent, Food, L1, T1) ➔ Energy_Increase(Agent, L1, T1). This is a specific 

causal rule: it says as currently understood, the Energy_Increase can only take place if 

the Agent Touches the Food at location L1 and time T1.  

The action part of the causal rule, Touch(Agent, Food, L1, T1), is the diachronic 

causal condition. The “background” or “context” part of the rule, At(Agent, L1, T1), is 

the synchronic causal condition. The synchronic causal condition is an “enabling” con-

dition – it enables the diachronic preconditional “cause” - Touch(Agent, Food, L1, T1) 

to give rise to the “effect” - Energy_Increase(Agent, L1, T1). 

Now, suppose the Agent then wanders to another location L2 and Touching another 

piece of Food at time T2 and also experiencing an increase in energy. Another specific 

causal rule can be learned: At(Agent, L2, T2) & Touch(Agent, Food, L2, T2) ➔ En-

ergy_Increase(Agent, L2, T2). At this stage, a general causal rule can be induced from 

the two specific instances: At(Agent, Any L, Any T) & Touch(Agent, Food, Any same L, 

Any same T) ➔ Energy_Increase(Agent, Any same L, Any same T), meaning that the 

exact values of location and time are not important for the Touching action to give rise 

to Energy_Increase (but they must be the same in the three predicates), but Touching 

the Food is necessary. 

We term this process of unsupervised learning in which the causal rules are picked 

up, learned, and encoded from observation carried out on the environment the process 
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of causal learning (of causal rules). The process is similar for temporal correlation rule 

learning – as we mentioned above, if the first event is not an action effected by the 

agent (in this case, Touch), instead it is just an event observed in the environment, then 

it would be just a temporal correlation rule useful for prediction but not problem solving 

(because the first event, not being an action, cannot be effected by the agent). Similar 

concepts of diachronic vs synchronic preconditions apply to temporal correlation rules. 

 

2.3 The Atari Game Space Invaders 

In this section, we describe the basic features of the Space Invaders game. Fig. 2(a) 

shows a screen shot of the game. Basically, the game consists of a bunch of “Space 

Invaders coming from the top part of the screen, moving horizontally and then slowly 

downward, toward a Player at the bottom of the screen. Bullets are fired by the Space 

Invaders toward the Player. The Player has three actions available to her: move left, 

move right, or fire a bullet upward to destroy the Space Invaders. Every time an Invader 

gets hit, the score for the Player will increase, and vice versa. The Player has three lives 

and when those are expended, the game is over. If the Player can destroy all the In-

vaders, the game proceeds to the next level. There are barriers lined up near the bottom 

of the screen between the Invaders and Players that can shield the bullets from either 

side. 

 

 
Fig. 2. (a) The Space Invaders Game; (b) The symbolic predicates extracted from the scene.  

 

In Fig. 2(b), we show the symbolic predicate description of the scene of the Space 

Invaders game. The data is organized in a temporal form: at each time frame, there is a 

description of every entity and their associated parameters, much like the predicate de-

scription associated with the discussion in Fig. 1. So, for example, the description of a 

few of the Space Invaders and the Player at time frame Time(t1) could be: Time(t1) - 

Invader(ID=10, LocationX = x1, LocationY = y1), Invader(ID=11, LocationX=x2, Lo-

cationY=y2)… Player(LocationX = x10)…. If there are bullets in the corresponding 

time frames, they will be included. We encoded a “vision module” to extract this infor-

mation from every time frame of the Space Invaders game scene generated by the Atari 

game engine. 

 

2.4 A System for Causal/Temporal Learning, Reasoning, and Problem 

Solving 

In traditional AI, there was a sub-domain of study on problem solving in which there 

was an attempt to formulate a General Problem Solver (GPS) that has general problem 
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solving mechanisms for all situations, that can act on the facts and knowledge involved 

in particular domains to derive solutions for particular situations [11]. Our approach is 

similar here, except that the knowledge, in the form of causal rules, is learned from 

causal/temporal learning, while in traditional AI research associated with GPS, the 

knowledge involved was typically hand-coded. Fig. 3(a) shows this basic structure. 

 

 
 

Fig. 3. (a) The basic overall causal learning and problem solving framework. (b) The detailed 

processing modules of the Human-like Causal Learning and Problem Solving System 

(HLCLPSSS). 

 

In Fig. 3(b), we show the further detail on the various modules in the system. The 

processing begins with the Environment, which for Space Invaders, would be the Space 

Invaders’ visual scene. A Visual Processing module converts that to a time-based, epi-

sodic form as described above. 

Next, causal rules, much like those discussed in connection with Fig. 1 are learned 

and encoded. A “clean” causal rule extracted could be something like: At(Player, Any 

Location, Any Time) & Contact(Player, Invader_Bullet, Any Same Location, Any Same 

Time) ➔ Destroyed(Player, Any Same Location, Any Same Time + 1). (In the system 

we implemented, we used a “causal-noise” filtering mechanism (such as [17]) to re-

move the “noise” present in the Space Invaders visual scene that may intervene between 

a “true” cause-effect pair of events, but typically, very “clean” rules – meaning rules 

that do not have “unwanted” predicates - such as that above are not always easily ob-

tained through the unsupervised causal learning process, but they sufficed for the sub-

sequent problem solving processes that yielded the results that we could use to demon-

strate the idea of human-like performance for AI). A small handful of visual predicates, 

such as Contact, Destroyed, etc. are built-in recognition mechanisms which we assume 

a typical visual system, natural or artificial, should provide. 

In order to facilitate problem solving, the system also learns and encodes Scripts, as 

shown in Fig. 3(b). Scripts are basically longer chains of actions. E.g., a sequence of 

movements of a bullet from the starting point to the ending point could be a “Movement 
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Script”. Currently, in this system, sequences of any 5 actions observed in the environ-

ment are stored as Scripts. This vastly cuts down the search space of the problem solv-

ing process. 

The Problem Solving process of the system basically uses the traditional backward 

chaining process of AI – given a Goal specification, what are the rules and scripts from 

the Causal Rules and Script Base (CRSB) that can be assembled to concoct a solution. 

As will be described below, there are two kinds of Goals – Goal to achieve a desired 

state (Increase of Score) and Goal to avoid an undesired state (avoid Decrease of Score). 

As part of the Reasoning process, Mental Simulation is carried out to determine if there 

is any undesired state – e.g., the movement rules and scripts of the Invader’s bullet can 

be used to project into the future to see if they might hit the Player, much like a human 

mentally imagining the sequences of known event changes that lead to a certain conse-

quence. 

 

2.5 Goal-Directed Problem Solving 

As mentioned above, there are two kinds of goals - Goal to achieve a desired state 

(Increase of Score) and Goal to avoid an undesired state (avoid Decrease of Score). 

These are described as follows: 

Goal to Achieve a Desired State and the Associated Learning Process 

 

Fig. 4 illustrates a typical situation in Space Invaders in which there is a desired Goal 

to achieve. 

 

 
 

Fig. 4. To achieve a desired goal in Space Invaders: Player finds a solution to destroy an Invader. 

(a) Player is not in the correct position to destroy the Invader. (b) Player moves to the correct 

position as directed by the solution of a problem solving process. 

 

In Fig. 4(a), it is shown that the Player is not in a position to fire a bullet to destroy 

an Invader. The Player carries out a backward chained problem solving process and 

obtains a solution – moves to a location at which the Invader is in the direct line of fire 

and fires a bullet to destroy the Invader. 

The learning process proceeds as follows. In an initial “exploration phase” (much 

like the exploration phase of reinforcement learning), the Player fires at random, and 

occasionally a bullet would hit an Invader and destroy the Invader. After a few instances 

of similar experience, a causal rule such as this is learned: At(Player_Bullet, Any Loca-

tion, Any Time) & Contact(Player_Bullet, Invader(Any ID), Any Same Location, Any 
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Same Time) ➔ Destroyed(Invader(Any Same ID), Any Same Location, Any Same Time 

+ 1). (As mentioned above, in our implemented system, the learned rules may not look 

as “clean”, as there are other “noisy” diachronic and synchronic conditions that “creep” 

into the rule, but they suffice for problem solving purposes and this clean rule is good 

for illustrating the basic idea.). Subsequently, the Score goes up, and that is a desired 

Goal. In principle, the system should also learn the causal rule Destroyed(Invader, Any 

Location, Any Time) ➔ Increase_Score(Any Time + 1). (Our system can handle some 

degree of intervening noise between two causally or temporally linked events and learn 

the causality or temporal correlation [17], but the current Space Invaders environment 

proves too noisy to achieve this, so in our current implementation we use Destroy(In-

vader(Any ID), Any Location, Any Time) as our “built-in” Goal.) 

After all these causal rules have been learned, the system is ready to carry our back-

ward chained problem solving. At all times, the system is in the mode of looking for 

ways to achieve a desired Goal, and in this case, it would be Increase_Score or De-

stroyed(Invader(Any ID, Any Location, Any  Time). So, the above rules are then used 

in a backward chained process – in order to achieve destruction of an (any) Invader, a 

Player_Bullet must be made in Contact with it. In order for a Player_Bullet to be made 

in Contact with it, the Player_Bullet must be fired from a certain  position (encoded in 

the scripts learned earlier in an unsupervised learning process), in order for the 

Player_Bullet to be fired at a certain position the Player must Move to a certain location, 

etc. Thus, the solution shown in Fig. 4(b) is obtained. The Invader target can be selected 

at random or the nearest one to the Player is selected. 

The above process closely simulates the problem solving processes carried out by a 

human player rapidly in her mind about what to do to achieve the Goal of increasing 

the Score, and also simulates the rapid learning process for a human player to reach 

some decent level of score performance. 

Goal to Avoid an Undesired State and the Associated Learning Process 

 

Fig. 5 illustrate a typical situation in Space Invaders in which there is an undesired Goal 

to avoid. 

In Fig. 5(a), it is shown that an Invader fires a bullet at the Player. Using mental 

simulation based on the earlier learned, known rules of the bullet’s behavior, the system 

knows that some time in the future the bullet will hit the Player (because it is in the 

bullet’s path). The system therefore concocts a plan to prevent this from happening. 

The solution is to move left a little bit as shown in Fig. 5(b). In Fig. 5(c) it is shown that 

the bullet is successfully avoided. 

 
Fig. 5. Player avoids an undesired Goal of being destroyed by a bullet from an Invader. (a) A 

bullet is fired from an Invader toward the Player, and in mental simulation, the system knows 
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that the Player will get hit. (b) The system concocts a plan after some problem solving process to 

avoid the bullet. (c) The bullet is avoided. 

 

This learning of this process capitalizes on the idea of contrapositivity in logic. Con-

sider the following logical statement: 

 

A and B and C and D… ➔ E                                                                                  (1) 

 

The contrapositive of the above is: 

 

Not E ➔ Not A or Not B or Not C or Not D…                                                       (2) 

 

This contrapositive reasoning process is built into the system and used in the process 

of reasoning out a way to avoid an unnecessary goal. For example, in the beginning of 

the Space Invaders game, the situation of experiencing the undesired goal is first 

learned in a few instances in which the Invaders fire bullets and they destroy the Player 

(this is not random – the game engine deliberately does that). The entire script contain-

ing a sequence of events of a bullet appearing, moving step by step toward the Player, 

contacting the Player, and then the Player gets destroyed is learned: 

 

Appear(Bullet, Loc1) and Move(Bullet, Loc2) and Move(Bullet, Loc3) and… 

Contact(Bullet, Player, Loc10) ➔ Destroyed(Player, Loc10)                               (3)                                                   

 

This sequence is a conjunction of a series of events that must happen for the player 

to be destroyed. (After the system has encountered more instances of (3), a generalized 

version with “any location” in the location parameters will be learned.) 

Apply the contrapositive reasoning process, this is converted into: 

 

Not(Destroyed(Player, Loc10) ➔  

Not(Appear(Bull Appear(Bullet, Loc1) or 

Not(Move(Bullet, Loc2) or 

Not(Move(Bullet, Loc3) or 

Not(Contact(Bullet, Player, Loc10)) 

 

Which means that any of the actions taken to negate the original events in the se-

quence is sufficient to achieve a negation of Destroyed(Player, Loc10), which is the 

desired Goal of avoiding an undesired state. 

The system then queries its Causal Rule and Script Base (CRSB) in Fig. 3 to see if 

there is any solution to effect at least one of the negations. If the system can make the 

Bullet not Appear, at Loc1, where it Appears in the shooting situation, that will lead to 

the non-destruction of the Player. Or, if the system can Stop the Movement (Not(Move)) 

of one of the Bullets in any one of the locations Loc2, Loc3, etc., it will also be able to 

prevent the destruction of the Player (it is like a super-hero being able to stop a bullet 

in mid-flight). The last choice is to achieve a Not(Contact(Bullet, Player, Loc10)). It 

turns out for the Space Invaders game, the only action available is to move the Player 
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right or left, or to fire a bullet from the Player, none of which actions can immediately 

achieve any of the above negations. When the system encounters this situation of no 

available solutions from the CRSB, it will nevertheless try to emit any action at its 

disposal (this is built-in as a general “try anything to see if there is a solution” proce-

dure). It turns out that in this case by randomly emitting the left and right movements 

of the Player, a Not(Contact(Bullet, Player, Loc10)) can be achieved. This involves a 

search process with a small state space. 

Therefore, in general, causal learning, unlike the traditional AI search processes, 

when used in problem solving, can arrive at problem solutions very rapidly. Though 

there may still be some search processes involved like in our example above, the search 

space is miniscule compared to those typically effected by traditional AI search pro-

cesses, such as the A* search process. 

3 Results of Human-like Performance Space Invaders Game 

Playing System 

The various causal learning, reasoning, and problem solving processes, including inter-

nal mental simulations processes have been implemented and tested on the Space In-

vaders game. The results are shown in Fig. 6. 

 

 
 

Fig. 6. The results of the Human-like Causal Learning and Problem Solving System (HCLPSS) 

applied to the Space Invaders game, along with DeepMind’s results (as reported in their paper 

[10]) for comparison. 

 

In Fig. 6, the results from 3 trials, starting from the beginning of a typical Space 

Invaders game, are shown along with (i) human novice performance; and (ii) Deep-

Mind’s deep reinforcement learning results, as reported in their paper [10], time-scaled 

to assuming that it was run on the same computer as ours, based on the total number of 

video frames needed before certain performance is achieved. We also executed Deep-

Mind’s publicly accessible code to obtain its performance in the early part of the game. 
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It can be seen that our system’s speed is close to the order of magnitude of that of 

the human novice. Compared with human novice though, we began with no prior 

knowledge of the game. Humans typically would have some fundamental prior 

knowledge relevant to the game when they begin to play it, thus learning at an even 

faster rate – typically in fewer than a few minutes. 

Compared to DeepMind’s deep reinforcement learning though, the system’s speed 

of learning is obviously faster by orders of magnitude. 

4 Conclusion 

In this paper, we first define what we mean by human-like performance AI, which is a 

system that is not only able to achieve human performance in terms of “level” or “score” 

(like the percentage accuracy in classification or the game score in a computer game), 

but must also achieve the level or score in reasonably short, human-like time frame. 

Then we describe a causal learning and problem solving framework to demonstrate 

how, when applied to an Atari game Space Invaders, it is able to achieve human-like 

performance accordingly – achieving human-like game score in human-like time frame. 

The key idea behind the framework is the learning of the causalities taking place be-

tween different events, with “true understanding.” Explainability is an inherent prop-

erty of the system right from the beginning. 

We believe the general framework of causal learning and problem solving as de-

picted in Fig. 3 and demonstrated in this paper using Space Invaders has a general ap-

plicability to the situations that could be encountered by an AI or robotic system dis-

cussed in the Introduction section. 

What have demonstrated in this paper is the ability of the system to reach human-

like performance at the human novice level. We are currently continuing to enrich the 

basic framework of Fig. 3 to allow the system to reach human expert level performance. 

Future research will apply the basic system to more Atari games to further explore 

some fundamental issues, as well as to apply the basic causal learning and problem 

solving framework to real world robotic situations. 
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